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ABSTRACT 

This paper considers the relationship between mental imagery and software visualization in professional, 

high performance software development.  It presents overviews of four empirical studies of professional 

software developers in high-performing teams:  (1) expert programmers’ mental imagery, (2) how experts 

externalize their mental imagery as part of teamwork, (3) experts’ use of commercially available 

visualization software, and (4) what tools experts build themselves, how they use the tools they build for 

themselves, and why they build tools for themselves.  Through this series of studies, the paper provides 

insight into a relationship between how experts reason about and imagine solutions, and their use of and 

requirements for external representations and software visualization.  In particular, it provides insight into 
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how experts use visualization in reasoning about software design, and how their requirements for the 

support of design tasks differ from those for the support of other software development tasks.  The paper 

draws on theory from other disciplines to explicate issues in this area, and it discusses implications for 

future work in this field. 

 

Keywords:  Software visualization, empirical studies, high-performance programming, teamwork 

1. Introduction:  the relationship between software visualization and human 

tasks 

Richard Hamming wrote that “The purpose of computing is insight, not numbers” [1].  Arguably, the role 

of software visualization lies in supporting and promoting insight about software – and hence supporting 

human reasoning, both individual and shared.  In order to do so, software visualization must be consistent 

with human perception and cognition, as well as with human tasks that frame them.  Hence, it is difficult 

to consider software visualization without also considering how effective software developers reason 

about software, and how that human capability might be supported and extended using visual cues and 

devices [2].  This paper considers the relationship between reasoning about software (including mental 

imagery employed during design and communicating design ideas) and software visualization in 

professional, high performance software development. 

Software visualization has its roots in the earliest software development practice, when programmers 

watched the lights on the computer’s control panel and listened to the sounds of disk access to try to 

understand what the program was doing in the absence of other perceivable cues.  Software lacks 

tangibility and visibility (e.g., What does a compiler look like?  What is the size, weight and shape of an 

operating system?).  Code may be manifest, but how code works must be discovered and understood.  

Software visualization is concerned with using visual or graphical techniques (sometimes enhanced by 

audio) to provide perceivable cues to potentially obscure aspects of software systems, in order to reveal 

patterns and behaviours that inform software comprehension through all stages of software development. 
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This paper examines the relationship between software visualization and effective software developers’ 

reasoning specifically during design and generation.  Goel [3] argues, in the context of external 

representation, that there is a principled distinction to be made between design and non-design problems.  

That distinction is pertinent here.  There is substantial take-up of software visualization in the 

comprehension and maintenance of legacy systems, for example.  Yet it is not clear that visualizations 

designed to support comprehension and debugging are effective in supporting design and initial 

development.  It is difficult to consider software visualization without also considering the task it is meant 

to support, and it is unlikely that any single software visualization tool can address all software 

development tasks simultaneously [4].  Each task requires a different understanding – and a different 

view – of the software.  That view must be expressed through visual cues and devices that bridge 

effectively between properties of software and human reasoning.  The challenge is to identify the most 

appropriate visualization for a given task. 

This paper focuses on experts and their high-performing teams, on the basis that they have a track record 

of effective reasoning and effective communication about software.  The paper looks across a series of 

empirical studies of expert and high-performing team behaviour and reasoning to consider whether there 

are lessons from the experts’ own imagery and tools that might inform software visualization to support 

software design and generation.  Each study addresses a different facet of the continuum between what 

experts conceive in their minds and what they and their teams create in code.  Hence, in describing each 

study in turn, the paper steps from expert mental imagery, through externalization of that imagery in 

communicating design concepts, to visualization tools experts use (or do not use) and what characterizes 

them.  It considers which tasks experts choose to support with visualizations during software design and 

generation, and the nature of the visualizations they use to address them.  The purpose is to articulate 

what expert software developers visualize in their minds and how they represent their conceptions 

externally, in order to consider what roles visualization might play in supporting their reasoning and 

communication during development tasks.  

The sections are organized as follows:  a distillation of relevant findings from the literatures on mental 

imagery, expert problem-solving, memory and schema; a description of the context common to all of the 
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studies; descriptions of each of the empirical studies; a discussion of the implications of the findings for 

software visualization; and a conclusion. 

2. Background:  relevant observations from the literature 

Software visualization has developed apace with visual techniques, from early  ‘pretty printers’, which 

use typographic enhancements such as indentation and colour coding (e.g., [5]), to 3D ‘landscapes’ 

representing the structure of large software systems, to multiple, linked, dynamic visualizations of the 

interaction of system components at runtime.  The literature provides a number of good overviews (e.g., 

[6], [7], [8], [9]) and taxononomies (notably., [10], [4]). Various visualization tools are available on the 

web, on individual websites, and in compilations such as ‘SCG Smallwiki CodeCrawler:  A non-

exhaustive list of software visualization tools’ [11].   

Yet, despite developments in technology and techniques, questions remain about how well visualizations 

actually support human reasoning and tasks – and about how well they relate to the mental imagery that 

proficient software developers use in reasoning and communicating about software.  There is widespread 

anecdotal evidence (e.g., Lammers’s interviews of well-known programmers [12]) that programmers 

make use of visual mental images and mental simulations when they are designing programs.  There are 

broad, well-established literatures on mental imagery, expert problem-solving, memory and schema that, 

although they do not specifically address software design, can contribute to our thinking about imagery 

and representation in this context.  Although there is apparently little empirical research on programmers’ 

mental imagery per se, there is a well-established literature on expert problem solving which, taken as a 

body, suggests a pattern of mental structure building preliminary to efficient externalisation of solutions. 

Lesson 1:  Visualizations should provide appropriate abstractions, while supporting detailed enquiry and 

systematic exploration – the implication is that visualizations should be explorable and manipulable at 

different levels.   

Rationale:  Expert problem solvers (across domains) differ from novices in both their breadth and 

organisation of knowledge; experts store information in larger chunks organized in terms of underlying 

abstractions (see [13] and [14] for reviews).  When categorizing problems, experts sort in terms of 
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underlying principles or abstract features (whereas novices tend to rely on surface features) (e.g., [15], 

[16]). Experts form detailed conceptual models incorporating abstract entities rather than concrete objects 

specific to the problem statement [17].  Their models accommodate multiple levels and are rich enough to 

support mental simulations [18], [19].  There is a recurrent theme of overview and abstraction in expert 

reasoning which has relevance for tool-building, for which it raises the issue:  how can a tool show the 

essence rather than the superficial? 

Lesson 2:  Visualizations should offer relevance:  the visualization should map to appropriate referents 

and schema. 

Rationale:  It was Bartlett [20] who first suggested that memory takes the form of schema which provide 

a mental framework for understanding and remembering.  In general, the term ‘schema’ is used to 

indicate a form of mental template which organizes cognitive activity such as memory, reasoning, or 

behaviour.  Key characteristics or elements in the schema have ‘slots’ in the mental template:  the slots 

represent the range of values acceptable for those key characteristics.  Schema may be of varying levels 

of complexity and abstraction; their importance is in providing structure and economy. Chi et al. [21] 

suggest that the nature of expertise is due largely to the possession of schemas that guide perception and 

problem solving – i.e., experts have more and better schemas than novices.  Simon [22] observes that, 

when a task is ill-defined, users resort to pre-existing concepts:  stereotypes, schemata, or other 

knowledge.  Cole and Kuhlthau [23] see the use of schemata as fundamental to sense-making at the outset 

of problem solving:  the problem-solver invokes a schema or model of the problem in order to create a 

frame of reference and hence to identify the initial problem state.  On one hand, the use of existing 

schemata enables the user to take some action in unfamiliar or ill-defined tasks. On the other hand, the 

use of existing schemata can lead to misconception, mis-action, or fixedness [24].  

Lesson 3:  Visualizations should support selection of focus:  allowing selection of focus of particular 

subsets of information (while maintaining access to other information), allowing selective highlighting of 

different aspects of the software, matching representation to focus, supporting different perspectives 

through different visualizations.  
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Rationale:  Experts often engage in systematic exploration, whereas novices are less likely to engage in 

exploratory interactions [25].  

Lesson 4:  Visualizations should associate perceptual cues with aspects of semantic importance – for 

example, associating vividness and saliency with key functionality (and avoiding drawing attention to 

what is less important).  Visualizations should provide perceptual cues for deep structures and 

functionality – in order to assist in the detection of underlying patterns and structures. 

Rationale:  The well established literature on memory (dating back over a century to pioneers such as 

Ebbinghaus [26]) presents a number of findings that highlight the role of perceptual cueing in recall.  

Things which are easily visualized can be held in memory more easily – there is an entire literature on 

mnemonics, for instance (e.g., [27]).  More vivid images tend to be better remembered, although there is 

little or no correlation between the vividness and the accuracy of a memory [28].  Order of presentation 

affects recall:  the last items in a list tend to be remembered best (‘recency’), as do those which are 

presented earliest and are therefore most rehearsed or processed (primacy).  Recall is weaker than 

recognition.  Memory is an active encoding process, not a passive recording process, and is subject to 

distortions and bias at the encoding and retrieval stages. The encoding typically involves schemata, and 

this has many implications for the field of visualization research (Bartlett [20] and others). 

Lesson 5:  Visualizations should use multiple, varied perceptual cues, and they should link different 

visualizations or representations to promote discovery and insight.   

Rationale:  The psychology literature on mental imagery, informed recently by neurological and 

experimental evidence that imagery involves different systems (visual, spatial, verbal, temporal, 

Lessonal/semantic) which are usually handled in different parts of the brain, gives reason to consider that 

we maintain multiple mental representations and that imagery is encoded in multiple, different modalities 

and systems (e.g., [29], [30], [31]).  Many of the hypotheses about sources of insight are based on 

interactions between encodings.  For example, Anderson and Helstrup [32] argue that mental imagery is a 

source of discovery and synthesis.  Bartlett [33] wrote that imagery leads into bypaths of discovery.  

Logie [34] described an economy of images in memory, through which access to previously unrelated bits 

of information might be achieved:  many informative elements are integrated together in a structural 
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whole, increasing the available amount of information in working memory.  Lindsay [35] claimed that 

images allow inferences that are not based on proof procedures.  The most pertinent shortcoming of the 

imagery literature is the tasks involved.  Most of the studies deal with particular, usually concrete or real 

world images and simple tasks.  Hence their conclusions might not generalize to a realm in which the 

imagery concerns complex, abstract, imagined images.  

Lesson 6:  Visualizations should provide support for early conceptual activity. 

Rationale:  Experts tend to spend more time than novices planning and evaluating.  Experts are better 

able to form overviews, but thereafter they take longer to develop their understanding and representations, 

and they consider interactions among functions or components of a system more fully [36].  

Similarly, Card, Mackinlay and Shneiderman [37] “propose six major ways in which visualization can 

amplify cognition…:  (1) by increasing the memory and processing resources available to the users, (2) 

by reducing the search for information, (3) by using visual representations to enhance the detection of 

patterns, (4) by enabling perceptual inference operations, (5) by using perceptual attention mechanisms 

for monitoring, and (6) by encoding information in a manipulable medium.” (p. 16)  Do we really 

understand enough about the design of software visualizations to realize these gains?  Petre, Blackwell 

and Green [2] raised a number of cognitive issues facing software visualization, many of them identifying 

the gaps between the sorts of potential gains enumerated above, and the specific insights and techniques 

required to provide sufficiently selective and well-designed visualizations which focus appropriately on 

human cognitive activity.  Again, the missing link is between human reasoning about software and what 

is visualized.  The goal of the series of studies presented in this paper was to examine how expert 

software developers realize the link between their own reasoning and their representations. 

3. Context:  which experts, which software, which overall tasks? 

To reiterate:  the focus of this paper is on the relationship between expert mental imagery and software 

visualization in the context of software design and generation, rather than legacy software 

comprehension.  The motivation arises from a broader interest in what distinguishes expert reasoning and 

behaviour  in the development of software, and how they might be supported, and the goal of this series 
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of studies was to expose how experts bridge between their internal reasoning and various externalizations, 

realizations, and implementations of that reasoning.  From this, it was hoped that lessons could be 

identified that would benefit software visualization. Hence the studies examined how experts reasoned 

about software, elicited their imagery, and examined the sorts of tools they used and built to support their 

own reasoning.   

All four studies fit into the broad category of research which Ball and Ormerod [38] characterized as 

‘cognitive ethnography’.  They view expert activity in context, while contributing to the understanding of 

cognition ‘in-the-head’, hence attending to “the interplay between people-laden contexts and expert 

cognition” (p. 148).  Ball and Ormerod characterize cognitive ethnography as: 

observationally specific:  using small-scale data collection based around representative time slices of 

situated activity.  

purposive:  focusing on selected issues within existing work practices, and 

verifiable: in terms of validating observations across observers, data sets and methodologies. 

The studies reported here involved observing and characterizing the nature of practice as it is found.  The 

endeavour concerns identifying key concepts, representations, strategies, and processes in expert practice, 

rather than profiling cases in terms of existing categories or theories, and therefore it is elicitative, 

descriptive, and inductive in nature, and a qualitative approach was adopted as appropriate.  It is the 

existence and nature of the expert practice that is of interest, rather than its frequency.  Hence, the 

emphasis is on qualitative rather than quantitative analysis, although a quantitative consideration of 

prevalence and impact might well be a matter for further work. 

The approach provides a means for identifying patterns across individuals:  identifying phenomena of 

interest, cataloguing behaviours and strategies, identifying key factors, and focusing questions for further 

study.  It is informed by (and triangulates among) a variety of inputs, including:  direct observation, talk-

aloud protocols, interviews, environments and artefacts. 
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1.1 The experts 

The experts, from both industry and academia, and from several countries in Europe and North America, 

share the same general background:  all have ten or more years of programming experience; all have 

experience with large-scale, real-world, real-time, data- and computation-intensive problems; and all are 

acknowledged by their peers as expert.  All are proficient with programming languages in more than one 

paradigm. The coding language used was not of particular interest in these investigations, but, for the 

record, a variety of styles was exercised in the examples, using languages including APL, C, C++, 

Hypercard, Java, common LISP, macro-assembler, Miranda, Prolog, and SQL.  Their preferred language 

was typically C or C++, because of the control it afforded, but the preference did not exclude routine 

verbal abuse of the language. 

1.2 The companies and teams 

All were small teams of 3 to 12 members, all included at least one expert software developer of the 

calibre of ‘super designer’ [39], and all were in companies where the generation of intellectual property 

and the anticipation of new markets characterd the company’s commercial success.  All were high-

performance teams:  effective intellectual-property-producing teams that tend to produce appropriate 

products on time, on budget, and running the first time.  The companies were small, not more than 200-

300 employees, although some were autonomous subsidiaries of much larger companies.  

1.3 The domains 

Most teams were undertaking large, long-term (1- to 2-year) projects.  Often the software was one 

component of a multi-disciplinary project including computer hardware and other technology.  Industries 

included computer systems, engineering consultancy, professional audio and video, graphics, embedded 

systems, satellite and aerospace – as well as insurance and telecommunications.  Software developers 

generate between 5 and 10,000 lines of code per compile unit, typically around 200 lines per compile 

unit, with on the order of 3,000 files per major project. 

It is important to note that these experts work in relatively small companies or groups that typically 

produce their own software rather than working with legacy systems.  The software they produce is 
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‘engineering software’ rather than, for example, information systems, although products may include 

massive data handling and database elements.   

1.4 Limitations 

It is important to note that this work is based on studies in a specific context, one determined 

pragmatically – by which companies were willing to allow access to their expert software developers.  

The results presented may not generalize beyond this variety of design and this style of working. 

Experts are well-known for rationalizing their practice ‘on-the-fly’.  As reported by Schooler, Ohlsson 

and Brooks [40], there is evidence that solving insight problems relies on essentially non-reportable 

processes, even that verbalisation interferes with some important thought processes.  The dangers of 

elicitation techniques such as interviews are well-known, as reported in [41]. The main problems with 

data from verbal reports are the likelihood that cognitive processes of interest are not accessible to 

introspection, and the possibility that the experimenter might bias the response by asking only for certain 

types of report.  On the other hand, although subjective tests may be suspect, they have in some cases 

been shown to be reliably consistent, and to produce results just as good as those from more objective 

tests [42]  There is some evidence that self-ratings do correlate with demonstrated ability [43] and are 

stable in cases where they do.  These studies relied on subjects whose reports of activity in earlier studies 

corresponded well to other evidence of their activity, such as notes and observed actions, i.e., it relied on 

subjects who appeared to be ‘good self-reporters’. 

Similarly, the quality of observation depends on the quality of the observer.  Rigour in qualitative analysis 

derives from systematic practice, including the ‘operationalisation’ of categories as  castegorisation rules 

and exemplars that can be employed by other researchers; coding and indexing in a way that ensures an 

audit trail between data and  conclusions, and vigilance in seeking counter-examples to and 

inconsistencies with apparent patterns.  The limitations of verbal reports highlight the need for different 

forms of input, and for ‘triangulation’ among inputs in order to examine a proposition.  Validation in 

these studies is based on critical scrutiny of the findings by the informants, and on subsequent expert 

review. 
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4. Study 1:  Software developers’ mental imagery 

So what evidence is there about the nature of software developers’ mental imagery?  A previous paper 

[44] describes a study into the mental imagery of ten individual expert software developers, who were 

questioned directly regarding the nature of their mental representations while they were engaged in a 

design task.   

Study description - observation and interview of 10 software developers:  Ten expert software developers 

were asked to design solutions to one of four problems (an interactive noughts and crosses player, an 

academic timetable maker, a sub-anagram solver, or a pinball path predictor) or to a problem of their 

choice. The experts were asked to imagine themselves free of coding restrictions, and they were not asked 

to implement the solutions as code.  The small but non-trivial problems were chosen to evoke rich 

discussions by addressing classic issues in data representation and by admitting both standard and 

innovative treatments (the effective task is therefore the generation of potential solutions within this 

framework).  Transcripts taken throughout the task provided a record of software developer remarks and 

the contexts in which they were made; i.e., the transcripts provided a record of which remarks were 

spontaneous and which were prompted by questions keyed to the moments when (or the moments just 

after) the experts showed signs of internally-focussed thinking, such as pauses in writing activity, closing 

eyes, staring at blank paper (fixedly or with eye movement), or gesturing in the air.  Prompting questions 

were general, e.g.,: “What do you see?”, “What can you hear?”,  “What’s going on?”, “Where are you 

now?”.  After the tasks were completed, the experts were interviewed about their previous responses and 

about their imagery in general.  All notes and other products were collected, and the sessions were 

recorded.   

The analysis was inductive and iterative.  Notes and transcripts were examined for the imagery 

descriptions they contained, and those imagery accounts were grouped in terms of patterns and common 

elements.  The groups were data-driven, not shaped by any pre-existing framework.  Attention was given 

to the context in which the account was given. Particular attention was given to the spontaneity of the 

accounts (as reflected by the fluency and immediacy of description and by the amount of prompting 

required), to the programmer’s satisfaction with the account, and to any discrepancies.  Patterns (and 

observations about them) were articulated explicitly.  The data were re-examined, seeking contradictions 
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or inconsistencies that might challenge the induced patterns.  Hence, questions or conjectures that arose 

during examination of the data became the focus of another systematic iteration through the data.  This is 

consistent with the ‘constant comparison’ method suggested by Glaser and Strauss[45], although this 

study did not include the iterations of data collection suggested by grounded theory. 

This study consisted of structured observations and interviews attempting to elicit introspective reports of 

mental imagery, not a controlled laboratory experiment.   The experts, all familiar informants whose 

reports of activity in earlier studies corresponded well to other evidence of their activity, demonstrated a 

readiness to describe the form and content of their thinking.  The main images are as follows, each with 

an example from one of the informants in italics (see [44] for a more complete summary): 

dancing symbols (“text with animation”): “ … it moves in my head … like dancing symbols … I can see 

the strings [of symbols]… assemble and transform, like luminous characters suspended behind my eyelids 

… ” 

mental descriptions or discussion (mental verbalisations):  “I’m just talking to myself …” 

auditory images (auditory presentations of solution characteristics, with auditory qualities like loudness 

or tone reflecting some aspect of the solution):  “It buzzes … there are things I know by the sounds, by the 

textures of sound or the loudness … it’s like I hear the glitches, or I hear the bits that aren’t worked out 

yet … ” 

visual imagery, e.g.:  “values as graphs in the head … flip into a different domain … transform into a 

combined graph … (value against time; amplitude against frequency; amplitude against time) … ” 

machines in their minds (dynamic mental simulations, of three sorts:  abstract machines, pictures of 

implementations, and mechanical analogies), e.g.: “… nets of stuff … poking inputs and see what filters 

through … sucking: I’m ready, send me another one … ” 

surfaces (a strongly spatial, mathematically-oriented imagery of ‘solution surfaces’), e.g.: “It’s like 

driving across a desert looking for a well. What you actually have is good solutions distributed across this 

desert like small deep wells and your optimizer trundling along looking for them...” 
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landscapes (a strongly spatial imagery, a surface or landscape of solution components over  which they 

could ‘fly’), e.g.:  “… it’s like flying over landscape of stuff I’m thinking about, parts of the solution … I 

can see what the terrain is like, where I am and keep an eye on stuff on the horizon, or I can close in on 

something… “ 

presences (a sort of imagery that was not verbal, visual, or physical; an imagery of presence (or 

knowledge) and relationship), e.g.:  “ … no place holders, no pictures, no representation … just the 

notion, the symbol entities, semantic entities and the linguistic token … atomic notions. They just ‘are’.” 

There were some common characteristics of the imagery, viz: 

stoppably dynamic:  All of the images were described as dynamic, but subject to control, so that the rate 

could be varied, or the image could be frozen. 

variable selection:  The ‘resolution’ of the imagery was not uniform; the experts chose what to bring into 

and out of focus. 

provisionality:  All of the imagery could accommodate incompleteness and provisionality, which were 

usually signalled in the imagery in some way, e.g., absence, fuzziness, shading, distance, change of tone. 

many dimensions:  All of the experts reported using more than four dimensions.  The extra dimensions 

were usually associated with additional information, different views, or strategic alternatives. 

multiplicity:  All of the experts described simultaneous, multiple imagery.  Some alternatives existed as 

different regions, some as overlaid or superimposed images, some as different, unconnected mental 

planes. 

naming:  Although some of the imagery was largely non-verbal, the experts all talked about the ready 

ability to label entities in the imagery. 

The findings were presented to and discussed with the informants, who were asked to identify any 

inaccuracies.  Although not all of the informants experienced all the forms of imagery collected, all were 

satisfied with the capture and categorization of their own. 
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5. Study 2:  Externalisation of mental imagery 

A key question in this area is whether personal mental imagery ever becomes public or externalized.  A 

follow-on question is whether personal mental imagery would be of any use if it does become public.  

Some images and imagery, for instance, may be extremely useful to the individual, but by their nature 

may be very difficult to describe verbally and to use as a shared metaphor, because they are not well 

suited to reification and shared physical representations (such as diagrams, gestures, physical analogies, 

etc).   

It seems intuitively obvious that there are times when imagery does become externalized and when the 

externalisation is useful.  Yet there is little published evidence of effective, direct externalisation of 

personal mental imagery in software development, apart from introspective justifications for software tool 

design.  This section reports a form of externalisation which has been observed to occur naturally in high-

performance development teams:  when an individual’s mental image becomes focal to team design 

activity and reasoning [46].   

Study description – observation over time, focused on 5 teams in 3 companies, 10 projects overall:  The 

evidence discussed here is a ‘by-product’ of other studies:  initially, of the mental imagery study 

summarized above; subsequently, of a number of other in situ observational studies of early design 

activity.  Those studies had other issues as their focus, for example design representations and processes 

used by multi-disciplinary concurrent engineering teams, representations (including ephemeral ones) used 

in early ideas capture, and group discussions and processes in very early conceptual design.  Thus, the 

core evidence was accumulated from five different software development teams and ten different projects 

in three different companies over a period of some five years.  The data collection was opportunistic, 

recording relevant examples as they arose naturally.  The records collected for this study included audio 

recordings, detailed contemporaneous field notes, photographs of whiteboards and other artefacts, and 

photographs or photocopies of documents, including ephemera.   

Again, the analysis was inductive, identifying patterns and common elements among the examples, 

following the iterative, data-driven process described for the previous study.  Again, the captured 

accounts were presented to the informants, who were asked to scrutinize critically the accuracy of the 
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records and their analysis.  Only one example of a focal image is given below, but each group manifested 

at least one example, and the observations reported are representative of all examples. 

One typical example arose in the context of the mental imagery study described above.  The expert was 

thinking about a problem from his own work and articulated an image:  “...the way I’ve organized the 

fields, the data forms a barrier between two sets of functions...It’s kind of like the data forming a wall 

between them.  The concept that I’m visualizing is you buy special things that go through a wall, little 

ways of conducting electrical signals from one side of a wall to another, and you put all your dirty 

equipment on one side of a wall full of these connectors, and on the other side you have your potentially 

explosive atmosphere.  You can sort of colour these areas...there’s a natural progression of the colours.  

This reinforces the position queues...There’s all sorts of other really complex data interlinkings that stop 

awful things happening, but they’re just infinitely complex knitting in the data.  (Of course it’s not pure 

data...most of the stuff called data is functions that access that data.)  The other key thing...is this temporal 

business we’re relying on...the program is a single-threaded program that we restrict to only operate on 

the left or on the right...a hah!...the point is that the connections to the data are only on one side or the 

other.  The way I organize the data is...a vertical structure, and the interlinkings between data are vertical 

things...vertical interlinkings between the data tell me the consistency between the data, so I might end 

up, say, drawing between the vertically stacked data little operator diagrams...”  After he described the 

image fully, he excused himself and went down the corridor to another team member, to whom he 

repeated the description, finishing “And that’s how we solve it.”  “The Wall” as it became known, 

became a focal image for the group. 

1.5 How they occurred 

In the observed examples, the mental imagery used by a key team member in constructing an abstract 

solution to a design problem was externalized and adopted by the rest of the team as a focal image.  The 

images were used both to convey the proposed solution and to co-ordinate subsequent design discussions.  

The examples all occurred in the context of design, and the images concerned all or a substantial part of 

the proposed abstract solution.  
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1.6 The nature of the images 

The images tend to be some form of analogy or metaphor, depicting key structural abstractions.  But they 

can also be ‘perspective’ images:  ‘if we look at it like this, from this angle, it fits together like this’ —  a 

visualization of priorities, of key information flows or of key entities in relationship.  The image is a 

conceptual configuration which may or may not have any direct correlation to eventual system 

configuration.   

1.7 The process of assimilation 

In all of the examples observed, the image was initially described to other members of the team by the 

originator.  Members of the team discussed the image, with rounds of ‘is it like this’ in order to establish 

and check their understanding.  Although initial questions about the image were inevitably answered by 

the originator, the locus did shift, with later questions being answered by various members of the team as 

they assimilated the image.  The image was ‘interrogated’, for example establishing its boundaries with 

questions about ‘how is it different from this’; considering consequences with questions like ‘if it’s like 

this, does it mean it also does that?’; assessing its adequacy with questions about how it solved key 

problems; and seeking its power with questions about what insights it could offer about particular issues.  

In the course of the discussion and interrogation, the image might be embellished – or abandoned. 

1.8 They are sketched 

Sketching is a typical part of the process of assimilation, embodying the transition from ‘mental image’ to 

‘external representation’.  The sketches may be various, with more than one sketch per image, but a 

characteristic of a successful focal image is that the ‘mature’ sketches of it are useful and meaningful to 

all members of the group.  This fits well with the literature about the importance of good external 

representations in design reasoning (e.g., [47], [48], and others).  Ko, DeLine and Venolia [49], in a study 

of the information needs of software developers, found that design questions about intent and rationale 

were among the most difficult to satisfy.  These ‘mature’ sketches, with their shared interpretation, 

provide a means of preserving intent and rationale within the team. 



www.manaraa.com

Acc
ep

te
d m

an
usc

rip
t 

1.9 Continuing role reflected in team language 

If the image is adopted by the team, it becomes a focal point of design discussions, and key terms or 

phrases relating to it become common.  Short-hand references to the image are incorporated into the 

team’s jargon to stand for the whole concept.  But the image is ‘team-private’; it typically does not get 

passed outside the team and typically does not reach the documentation.  Although the ‘mature’ sketches 

noted above might be strong candidates for documentation, as they embody tested collective 

understanding, whether that understanding would persist over time and outside the coordination process is 

an open question.  Ko, DeLine and Venolia [49] highlight that “Even when developers found a person to 

ask, identifying the information they sought was hard to express…”  The short-hand references may limit 

the utility for persistent documentation, creating issues of interpretation for down-stream developers who 

were not part of the coordinated design and development. 

1.10 Imagery as a coordination mechanism 

The images discussed and interrogated by the team provide a co-ordination mechanism.  Effective co-

ordination will by definition require the use of images which are meaningful to the members of the group.  

The literature on schema provides explanation here (e.g., [20]).  Co-ordination – meaningful discourse – 

requires shared referents.  If there is a shared, socially-agreed schema or entity, this can be named and 

called into play.  But what happens when the discourse concerns an invention, an innovation, something 

for which there is no existing terminology, no pre-existing schema?  A preverbal image in the mind of the 

originator, if it cannot be articulated or named, is not available to the group for inspection and discussion.  

The use of extended metaphor, with properties in several different facets, provides a way of establishing a 

new schema.  In describing the image, the originator is establishing common reference points.  The 

recipient chooses what is salient in the properties of interest.  By interrogating and discussing the image 

and its implications with the originator, the recipients are establishing a shared semantics, and the 

originator is co-ordinating with the rest of the team (cf. Shadbolt’s research [50] on people’s use of maps 

and the establishment of a common semantics).  The discussion of the metaphor allows the team to 

establish whether they understand the same thing as each other.  The establishment of a richly visualized, 
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shared image (and the adoption of economical short-hand references) facilitate keeping the solution in 

working memory (e.g. [34]). 

It is interesting to note that this co-ordination issue has been taken on board by recent software 

development methodologies, which often try to address it by creating an immersive environment of 

discourse and artefacts which is intended to promote regular re-calibration with the other team members 

and with artefacts of the project.  For example, ‘contextual design’ [51] describes ‘living inside’ displays 

of the external representations in order to internalize the model (to take it into one’s thinking), referring to 

the displayed artefacts as “public memory and conscience”.  In another example, ‘extreme programming’ 

[52] emphasizes the importance of metaphor, requiring the whole team to subscribe to a metaphor in 

order to know that they are all working on the same thing.  In that case, the metaphor is carried into the 

code, for example through naming. 

So, individual imagery does sometimes enter external interaction.  The mental imagery used by a key 

team member in constructing an abstract solution to a design problem can in some cases be externalized 

and adopted by the rest of the team as a focal image.  Discussing, sketching and ‘interrogating’ the image 

helps the team to co-ordinate their design models so that they are all working on the same problem – 

which is fundamental to the effective operation of the team. 

6. Study 3:  To what extent do these software developers use available 

visualization tools? 

Given the naturally-occurring use of image, abstraction, and sketches and other external design 

representations, to what extent do these software developers use available visualization tools to help 

them?  This section reports on opportunistic interviews with proficient software developers about their 

use of (or reluctance to use) available software visualization tools.   

Study design – interviews of 12 software developers in 3 companies, and review of practice:  Semi-

structured interviews were conducted with 12 software developers in high-performing teams, from 3 

different companies. This study was conducted in the shadows of other studies into other aspects of 

software development  (as described in Section 5 above).  Key team members were interviewed – those 
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likely to make decisions on models and solutions as well as decisions on tools.  The interviews included a 

‘guided tour’ of their libraries of applications that included software visualization.  The ‘tours’ were led 

by the informants.  Questions were asked only when the protocol was not covered spontaneously.  For 

each relevant application, information was collected regarding: 

A general description, including what sorts of visualizations it afforded; 

How it had been used, for which tasks, with examples if available; 

To what extent it had been used; 

If it was still in use, what it was considered to be ‘good for’; 

If it had been abandoned, why it had been set aside. 

Detailed notes were taken (including verbatim quotation), and audio recordings were made where 

permitted.  The face-to-face semi-structured interviews were augmented with telephone and email queries 

to additional informants.  Again, the analysis was inductive, identifying patterns and common elements 

among the accounts.  Material from additional informants was not used in the initial analysis, but was 

used as a validation sample for the observations drawn from the principal data. 

The software developers talk about software visualization with respect to three major activities:  

comprehension (particularly comprehension of inherited code), debugging, and design reasoning.  These 

software developers showed no reluctance to investigate potential tools, and they described trials of tools 

as diverse as Burr-Brown DSP development package, Cantata, MatLab, Metrowerks Code Warrier IDE, 

Mind Manager, MS Project, MS-Select, Rational Rose, Software through Pictures (STP), and Visio 

(among others).  Tools they did take up usually related to software comprehension and debugging.  In that 

context, the tools that persisted were those which were robust, worked at scale, and associated well with 

their preferred software development environment.  But even in debugging and comprehension, the 

experts relied more on their own systematic practices than on visualizations – and their use of available 

visualizations related to how directly the visualizations supported their practices.  Tools which simply re-

presented available information, which failed to provide forms of abstraction or selection, or which 

embodied assumptions at odds with the experts’ practices were discarded. 
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Take-up was extremely low in the context of design and generation.  The exception was for general tools 

such as MatLab which allowed software developers to realize their own visualizations (as is discussed in 

the next section) – in effect for visualization-builders rather than visualizations per se.  So what makes 

other tools into shelf-ware?  (Please note that ‘Not invented here’ was never offered as a reason not to use 

a tool.) 

reliability:  Packages that crashed or mis-behaved on first exposure did not usually get a second chance. 

overheads:  The cost of take-up was perceived as too high.  Usually the cost was associated with taking 

on the philosophies, models or methodologies embodied in and enveloping the visualization elements.  

Where there were major discrepancies of process between the package and existing practice, or where 

there was incompatibility between the package and other tools currently in use, the package was typically 

discarded as likely to fail.  It must be considered that these are high-performance teams, with well-

established methodologies and work practices.  They continually seek tools and methods that augment or 

extend their practice, but they are reluctant to change work practices (particularly work style) without 

necessity.   

lack of insight:  Tools that simply re-present available information (e.g., simplistic diagram generation 

from program text) do not provide any insight.  Experts seek facilities that contribute to insight, e.g., 

useful abstractions, ready juxtapositions, information about otherwise obscure transformations, informed 

selection of key information, etc. 

lack of selectivity:  Many packages produce output that is too big, too complicated, or undifferentiated.  

For example, all processes or all data are handled in the same way, and everything is included.  Experts 

want ways of reasoning about artefacts that are ‘too big to fit in one head’; simply repackaging massive 

textual information into a massive graphical representation is not helpful.  They seek tools that can 

provide a useful focus on things that are ‘too big’, that can make appropriate and meaningful selections 

for visualization. 

lack of domain knowledge:  Most tools are generic and hence are too low-level.  Tools that work from the 

code, or from the code and some data it operates on, are unlikely to provide selection, abstraction, or 

insight useful at a design level, because the information most crucial to the software developer – what the 
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program represents, rather than the computer representation of it – is not in the code.  At best, the 

software developer’s intentions might be captured in the comments.  As the level of abstraction rises, the 

tools needed are more specific, they must contain more knowledge of the application domain.  Experts 

want to see software visualized in context – not just what the code does, but what it means. 

assimilation:  Sometimes tools that do provide useful insights are set aside after a period of use, because 

the need for the tool becomes ‘extinct’ when the function (or model or method) the tool embodies is 

internalized by the software developer. 

What the software developers seek in visualization tools (selectivity, meaningful chunking or 

abstractions) – especially in tools for design reasoning – appears to relate directly to their own mental 

imagery, which emphasizes selectivity, focus, chunking and abstraction.  It relates as well to what the 

literature has to tell us about ways in which human beings deal with massive amounts of information, 

e.g.:  chunking, selection, schema – and to the nature of the differences between experts and novices.  

They want (and as the next section will indicate, they build) tools that have domain knowledge and can 

organize visualizations according to conceptual structure, rather than physical or programme structure – 

but that can maintain access to the mapping between the two.  For example, the software developers talk 

about tracking variables, but at a conceptual rather than a code level.  A ‘conceptual variable’ might 

encompass many elements in the software, perhaps a number of data streams or a number of buffers 

composing one thing, with the potential for megabytes of data being referred to as one object.  The 

software developers distinguish between ‘debugging the software’ (i.e., debugging what is written) and 

‘debugging the application’ (i.e., debugging the design, what is intended).   

7. Study 4:  The visualizations experts build for themselves 

So, what sorts of visualization tools do experts build for themselves, and what relationship do they have 

to experts’ mental imagery?   

Study design – opportunistic observation over many years:  multiple companies, multiple projects:  Over 

a number of years, in association with other studies of software development, we asked experts and high-

performing teams to show us the visualization tools they built for themselves.  In some cases, the 
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demonstrations were volunteered (for example, in the mental imagery study, when one expert in 

describing a form of imagery said, ‘here I can show you’; or for example in the survey of application use, 

when some software developers included their own tools in the review of tools they’d tried).  Examples 

were collected to the extent permitted by the informants; access was sensitive because of the proprietary 

nature of the material examined, and the examples offered below are used with permission.  Each 

example was documented in field notes, accompanied when possible by screen dumps annotated by the 

developers.  The visualization developers were asked to demonstrate the visualization, and they were 

interviewed about their intentions for and use of the visualization.  Again, the analysis was inductive, 

seeking patterns and lessons across the examples.  And, again, the findings were presented to and 

discussed with the informants, who were asked to scrutinize the accounts and their analysis critically, 

identifying any inaccuracies. 

The experts’ own visualizations tended to be designed for a specific context, rather than generic.  In one 

expert’s characterisation of what distinguished his team’s own tool from other packages they had tried:  

“the home-built tool is closer to the domain and contains domain knowledge”.  The tools appeared to fall 

into two categories, corresponding to the distinction the experts made between ‘debugging the software’ 

and ‘debugging the application’.  Each category is discussed in turn. 

1.11 Low-level aspect visualization  

A typical visualization tool in this class is one team’s ‘schematic browser’ (Figure 1).  This program 

highlighted objects and signal flows with colour.  It allowed the user to trace signals across the whole 

design (i.e., across multiple pages), to move up and down the hierarchy of objects, and to find and relate 

connections.  It moved through the levels of abstraction, relating connections at higher levels to 

connections lower down through any number of levels and through any number of name changes, for 

example following one conceptual variable from the top to the bottom of a dozen-deep hierarchy and 

automatically tracking the name changes at different levels.  It allowed the user to examine the value of 

something on a connection, and to manipulate values, for example altering a value on one connection 

while monitoring others and hence identifying the connective relationship between different parts.  The 

program embodied domain information, for example having cognizance of the use of given structures, in 
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effect having cognizance of what they represented, of the conceptual objects into which schematic 

elements were composed.   

It appears that these tools reflect some aspects of what the imagery presents, but they do not ‘look like’ 

what the engineers ‘see’ in their minds.  There are a number of such tools, especially ones that highlight 

aspects of circuits or code (e.g., signal flows, variables) or tools for data visualization, as well as tools that 

represent aspects of complexity or usage patterns.  In effect, they visualize things engineers need to take 

into account in their reasoning, or things they need in order to form correct mental models, rather than 

depicting particular mental images. 

1.12 Conceptual visualization  

A typical visualization tool in this class is one team’s ‘rubber sheet’ (Figure 2).  This program is a 

visualization of a function used to build digital electronic filters for signals, which normally have a very 

complex and non-intuitive relationship between the values in the equations and the effect they have on the 

frequency response of the resulting filter.  The tool allows the user to design the frequency response 

visually by determining the profile of a single line across the ‘rubber sheet’.  The user moves peaks and 

dips in a conforming surface, rather than changing otherwise random-looking values in equations.  The 

altitude one encounters on a walk through the resulting terrain along a particular path determines the final 

frequency response.  The insight comes from the ‘terrain’ context.  If one is just moving the points where 

the peaks and dips are, and can only sees the values along the line, it is hard to see how the values along 

the line are varied by moving the peaks and dips.  However, if one can see the whole terrain, it is easy to 

comprehend why the peaks and dips have moved the fixed path up and down.  Designers do not need to 

know all this terrain information in order to know what the filter does, but it provides the link between 

what the filter does and what the designer can control. 

It appears that these tools can be close to what engineers ‘see’ in their minds.  (Indeed, this example was 

demonstrated as a depiction of one software developer’s personal mental imagery.)  As in the example, 

they often bear strong resemblance to mathematical visualizations or illustrations. 

The two categories of tool differ not just in their relationship to experts’ mental imagery, but also in how 

they are used.  The low-level aspect visualizations tend to be used to debug the artefact.  They pre-
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suppose that the expert’s understanding of the artefact is correct, and examine the artefact in order to 

investigate its behaviour.  The conceptual visualizations tend to be used to debug the concept or process – 

to reason about the design.   

8. Implications and discussion 

It has been suggested that the big issues that face software visualization – particularly with respect to 

design – relate to matching visualizations to human needs.  What can we and can we not visualize?  Are 

we visualizing the right things?  Currently, it is still arguable that what is visualized is what can be 

visualized, not necessarily what needs to be visualized.  The big technical challenges lie in developing the 

analysis and selection techniques needed to tailor visualizations to support human cognition.  Tools that 

simply re-present available information (e.g., simplistic diagram generation from program text) do not 

provide insight.  Software developers seek facilities that contribute to insight, e.g., useful abstractions, 

ready juxtapositions, information about otherwise obscure transformations, informed selection of key 

information, etc.  Visualization developers are still struggling with what Gómez-Henríquez [53] calls the 

‘probe effect’:  ensuring that the visualization is reliable enough to ensure that what the user sees is what 

is really happening – whether or not it is what the user needs to see.  Underlying the challenge to identify 

the most appropriate visualization for a given task is the need to reach a well-founded understanding of 

what makes visualizations appropriate for given tasks.  

The features observed in expert practitioner behaviour in this domain are consistent with findings in a 

range of related literatures.  What are the implications, and what practical advice can be offered as a result 

of these literatures? 

1.13 Visualizing concepts and intentions vs. re-presenting implementations 

There are few visualizations yet to support conceptual design.  There is a need to provide conceptual 

visualizations, rather than just re-presentation of the code, performance or data flow.  This highlights the 

need to make available information that is not typically contained in the source code:  information about 

the originators’ intentions and models of the software.  This implies that the visualizations (and the tools 



www.manaraa.com

Acc
ep

te
d m

an
usc

rip
t 

that drive them) must embody more knowledge of the application domain.  As discussed in Section 6, 

experts want to see software visualized in context – not just what the code does, but what it means.   

1.14 Intelligent selection requires domain knowledge 

The utility of visualization lies not in mere re-presentation of data, but in an appropriate and meaningful 

distillation and abstraction of the data in order to provide access to desired information about the 

software.  That is, it is no good translating massive source code into an equally massive visualization; 

what is required is views on the artefact that disclose significant patterns within it.  Tudoreanu [50] 

discusses software visualization in terms of “cognitive economy”:  minimizing cognitive load by reducing 

the amount of information handled by the user and maximizing the information pertinent to the user 

problem (which is different from reducing complexity related to visual displays).  Cognitive economy 

requires that the visualization be customized for the problem at hand, tailored to the user's task and goals.  

This, in turn, requires some knowledge of the domain.    

According to Chi, “…good visualizations are coupled with good analysis algorithms.  We can get the 

most power out of visualization if we use a sophisticated analysis computation that distils the data further 

from the raw data.”[55] 

One implication is that generic tools are not selective.  Because they do not contain domain knowledge, 

they cannot depict what the software developers actually reason about when they reason about design. 

Automatic generation from code is inherently unlikely to produce conceptual visualizations because the 

code does not contain information about intentions and principles.  The extent to which domain 

knowledge can be encoded is a suitable topic for further research 

1.15 Design visualization versus program visualization 

The distinction between low-level aspect visualization and conceptual level visualization (in the self-built 

tools) is also important. At feature level the visualization contributes to the mental imagery rather than 

reflecting it.  At conceptual level, by contrast, it appears that there can be a more direct relationship 

between the mental imagery and the software visualization.  More work is also needed on design 

visualizations (as opposed to software visualizations) and on the interaction between the two – to what 
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extent does understanding design visualization contribute to solving problems in the domain of program 

visualization? 

It is important to remember that there are differences between design visualization and program 

visualization.  Design visualization is a divergent thinking problem in the early stages at least, which 

requires creativity and readiness to think ‘outside the box’.  Schön [48] talks about a design as a ‘holding 

environment’ for a set of ideas.  The importance of fluidity, selectivity, and abstract structure are 

emphasized by both the experts’ own mental imagery and by their stated requirements for visualization 

tools.  It is little surprise that, in this context, experts conclude that “NOBO [whiteboard]...The best of all 

tools until the pens dry out.  No question.”  and “Nothing is as good – and as quick – as pencil and 

paper.”   Program visualization, in contrast, often involves dealing with existing legacy systems, where an 

important part of the task is reconstructing the design reasoning of previous software developers which 

led to the system under investigation – this paper contributes little to legacy system comprehension. 

9. Conclusion 

It appears that, in the context of the design and generation of ‘engineering software’, there is sometimes a 

fairly direct relationship between mental imagery and software visualization – but that it is more often the 

case that visualizations contribute to rather than reflect mental imagery.  It also appears that the 

externalisation of expert mental imagery can play an important role in the design reasoning of high-

performance teams, both through co-ordination of team design discussions, and through embodiment in 

custom visualization tools.  Experts tend not to use available visualization tools, because they do not 

contribute sufficiently to design reasoning.  Their custom visualization tools differ from others in their 

embodiment of domain knowledge, facilitating investigations at a conceptual level. 
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Figure 1:  A ‘schematic browser’ – an example of low-level aspect visualization. 
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Figure 2:  The ‘rubber sheet’ – an example of concept visualization. 

 


